Определим диаметры напорного, сливного и всасывающего трубопровода. Для этого зададимся приблизительными скоростями потока жидкости в этих гидролиниях. Примем следующие скорости потока жидкости:
в напорном трубопроводе υн = 4 м/с;
в сливном трубопроводе υс = 2 м/с;
во всасывающем трубопроводе υв = 1 м/с;
Диаметр трубопроводов можно определить по формуле (3.6.1):
(3.6.1)
Где QH - подача насоса, л/мин;
υ - скорость потока жидкости, м/с;
,м
,м
,м
В соответствии с ГОСТ 16516-80 выбираем стандартные диаметры трубопроводов, которые используем в дальнейших расчетах dН = 16 мм; dС = 20 мм; dВС = 32 мм.
Теперь уточним действительные скорости потока жидкости в напорном, сливном и всасывающем трубопроводах по формуле (3.6.2)
(3.6.2)
получаем действительные скорости потока жидкости в трубопроводах:
υн=3,4 м/с υс=2,2 м/с υв=0,85м/с. Эти значения скоростей будем учитывать в дальнейших расчетах.
Расчет всасывающего трубопровода
Расчет проведем по формуле (3.7.1)
Запишем уравнение Бернулли:
(3.7.1)
Где Р0 - атмосферное давление, Па;
ρ - плотность жидкости, кг/м3;
g - ускорение свободного падения, м/с2;
hB - высота всасывания, м;
υB - скорость потока жидкости во всасывающем трубопроводе, м/с;
ζ - коэффициент местных сопротивлений всасывающего трубопровода;
bВ - поправочный коэффициент, учитывающий влияние вязкости жидкости на местные потери;
λВ - коэффициент трения жидкости о стенки всасывающего трубопровода;
lВ - длина всасывающего трубопровода, м;
dB - диаметр всасывающего трубопровода, м.
Произведем расчет потерь давления в диапазоне температур от минус 10 градусов до 80 градусов Цельсия.
Все полученные данные внесем в таблицу (таблица 3.7.1)
Число Рейнольдса определим по формуле (3.7.2) при температуре жидкости tЖ = 10°С
(3.7.2)
Где ν – вязкость жидкости, м2/с.
Аналогичным образом определим числа Рейнольдса для других температур. Полученные данные занесем в таблицу (3.7.1)
Так как число Рейнольдса для диапазона температур от -40˚С до 80˚С меньше 2300, то режим течения будет ламинарным. Коэффициент Дарси для ламинарного режима течения можно определить по формуле (3.7.3.
Определим коэффициент Дарси для температуры 0˚С:
, (3.7.3)
Из графика зависимости поправочного коэффициента b от числа Рейнольдса определим поправочный коэффициент bВ и результаты занесем в таблицу (3.7.1).
При температуре жидкости tж = 10˚С
Па
По полученным результатам строим график (рисунок 3.7.1) зависимости давления во всасывающей камере насоса от температуры при высоте всасывания h1 = +0,5 м и h2 = – 0,5 м.
Из построенных графиков видно, что давление во всасывающей камере насоса при размещении гидробака на 0,5 м выше всасывающей камеры насоса дает существенный положительный эффект. При температуре выше 50˚С давление во всасывающей камере насоса превышает атмосферное. Расчет показал, что при проектировании гидрофицированных машин целесообразно размещать гидробак на высоту 0,5 м выше уровня насоса, что в свою очередь позволяет повысить всасывающую способность насосов.
|
|
Рисунок 3.7.1 – Зависимость давления во всасывающей камере насоса от температуры
1- высота всасывания плюс 0,5 м
2- высота всасывания минус 0,5м.
Популярное на сайте:
Техническое обслуживание узла и его
составных частей
Техническое обслуживание рулевого управления заключается в основном в проверке его состояния, подтяжке креплений, регулировке зазора в рабочей паре редуктора рулевого механизма и затяжке подшипников. Основным показателем состояния рулевого управления является свободный ход (люфт) рулевого колеса. Б ...
Определение общей годовой трудоемкости ТО и ТР
подвижного состава на АТП
Определение трудоемкости ЕО, ТО-1, ТО-2 и СО ТЕО = tE*KМ*NУМР (9.20) ТЕО = 0,484*1*51147 = 21755,1 (ч. час) где KМ - коэффициент механизации показывает снижение трудоемкости за счет механизации работ ЕО, принимается равный 1. Для ТО-1: ТТО-1 = tТО-1*NТО-1 (9.21) ТТО-1 = 2,21*7034 = 15541,1 (ч. час) ...
Эскизная компоновка редуктора
Исходные данные: , , . Построение схемы эскизной компоновки редуктора, и расчет всех размеров. , принимаем: . . ...